

Pergamon

Tetrahedron Letters, Vol. 35, No. 37, pp. 6899-6902, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)01394-2

A Cobalt-Complexed Propynal in Organic Synthesis: A Highly Stereoselective Total Synthesis of Bengamide Et

Chisato Mukai,* Osamu Kataoka, and Miyoji Hanaoka*

Faculty of Pharmaceutical Sciences, Kanazawa University Takara-machi, Kanazawa 920 Japan

Abstract: A highly stereosolective aldol reaction of the cobalt-complexed 4-methylpent-2-ynal 2 with O -silyl ketene O_s -acetal 3 provided the syn-aldol product, which was subsequently converted to (+)-bengamide E steps.

Several bengamides. novel amino acid derivatives, have recently heen isolated from a Choristid sponge collected in Fiji Islands.¹ Bengamides thus obtained have been shown to possess significant antihelminthic **activity as well as cytotoxicity. (2R,3R,4S,5R,6E)-3,4,5-Trihydroxy-2-methaxy-8-methylnon-6-enoyl side chain (C-10 side chain) was elucidated as a common structural feature of bengamide family. Therefore,** stereoselective construction of the C-10 side chain involving four contiguous stereogenic centers would be the **most crucial point to develop a general procedure for the total synthesis of bengamide family. Several groups** have already accomplished total syntheses of bengamide E_r² B_r^{2b} and A³, and the C-10 side chain.⁴ starting from natural resources like cyclitol,^{2a,3} glucose,^{2b,c,4} tartaric acid^{2d} and glyceraldehyde.^{2e} We describe in this **letter a highly stexeoselective construction of the C-10 side chain as well as a total synthesis of bengamide E (l), a representative of bengamide family having the simplest cyclic lysine component, from the cobaltcomplexed propynal2 via dual highly selective aldol reactions.5**

As our point of departure, we took the cobalt-complexed 4-methylpent-2-ynal2 as a starting material since the cobalt-complexed propynals have recently been shown to be excellent substrates for highly syn-

[†] This paper is dedicated to Professor Yasumitsu Tamura on the occasion of his 70th birthday.

6900

(a) BF₃ \cdot OEt₂, CH₂Cl₂, -78°C; (b) CAN, McOH, 0°C, 83 % from 2 (syn : anti = 95 : 5); (c) (S)-1-phenylethyl isocyanate, N,N-dimethylethanolamine, benzene, reflux; (d) Co₂(CO)₈, Et₂O; (e) separation by column chromatography; (f) CAN, MeOH, 0°C; (g) HSiCl3, benzene, r.t., 30 % from (±)-4; (h) TBSCl, imidazole, DMF, r.t., 89 %; (i) DIBAL, CH₂Cl₂, -78°C; (j) SnCl₄, CH₂Cl₂, -78°C then 7, 68 % from 6 (9 : 10 = 92 : 8); (k) HCl, THF, H₂O, r.t.; (I) AgOCOCF₃, THF, 50°C, 74 % from 9; (m) Et₃N, dioxane, r.t., 91 %; (n) Na, NH₃, THF, -78° C, 62 %.

selective aldol reaction with O-silyl ketene O_s -acetals.⁵ Thus the cobalt complex 2, easily prepared from 4methylpent-2-yn-1-ol⁶ by two steps [(i) PCC oxidation, (ii) cobalt complexation with Co₂(CO)₈], was allowed to react with O-silyl ketene O_sS-acetal 3 ($E : Z = 27 : 73$), derived from S-tert-butyl benzyloxyethanethioate in the presence of boron trifluoride etherate (BF₃-OEt₂) in dry methylene chloride at -78°C. The resulting aldol condensation products with cobalt moiety were subsequently decomplexed with cerium(IV) ammonium nitrate (CAN) in methanol at 0° C to afford syn-isomer (\pm)-4 in a highly diastereoselective fashion (83 %, syn : anti = **95** : **5). Optical resoludon of (i)4 was easily achkved as follows. s-(-)-l-Phenykthylaminoccpbonyl group** was introduced on the β -hydroxy group of (\pm)-4 to give an inseparable diastereomixture, which was converted into a mixture of the corresponding cobalt-complexed compounds by Co₂(CO)₈ treatment. Chromatographic separation, consecutive demetalation and removal of carbamate moiety⁷ provided (-)-4 $\{[\alpha]_D^{24}$ -87.1° (c 1.0, **CHCl3)** and (+)-4 $\{[\alpha]_D^{18} +85.6^{\circ}$ (c 1.0, CHCl3)} in 60 % overall yield $[(-)-4; (+)-4 = 50; 50]$ from (±)-**4.8 It should be mentioned that cobalt complexation of the carbamates 5 enabled us to isolate each enantiomer** by chromatography without any trouble.

With chiral syn-aldol product (-)-4 with two requisite stereogenic centers in hand, we turned our effort to elaboration of $(-)$ -4 to the C-10 side chain. β -Hydroxy group of $(-)$ -4 was protected with tertbutyldimethylsilyl chloride to furnish 6 (89 %). Reduction of 6 with diisobutylaluminum hydride afforded the **aldehyde 7. which was immediately exposed to the aldol reaction under the chelation-controlled condition with** stannyl enolate,⁹ prepared in situ from O-silyl ketene O_2 -acetal 8 (E : $Z = 25 : 75$) and stannyl(IV) chloride, to yield the aldol product 9 along with its 2-epimer $10(9: 10 = 92: 8)^{10}$ in 68 % overall yield from 6. This **stexeo&kctive aldol reaction furnished all carbon framework required for the synthesis of the C-10 side chain** of bengamides with correct stereochemistry.

The next phase of our synthesis of bengamide E faced some modifications of 9 and a coupling with the **cyclic lysine derivative. Prior to a coupling with cyclic lysine derivative 12, the aldol product 9 was transformed into the corresponding S-lactone** 11 in 74 5% yield **by hydrolysis with hydrochloric acid and** lactone formation with silver(I) trifluoroacetate.¹¹ The coupling reaction of 11 with (S) - α -amino- ε caprolactam 12¹² easily proceeded in the presence of triethylamine in dioxane without protection of the C-3 hydroxy group to give the condensation product 13 in 91 % yield. The Birch reduction (Na / NH₃) of 13 **effected simultaneous removal of benzyl group on the C-4 hydmxy group of the side chain and reduction of the** triple bond to *trans*-double bond to provide bengamide E (1) $\{[\alpha]_D^{22} + 24^\circ \ (c \ 0.1, \text{MeOH})\}$, lit.^{2a} $[\alpha]_D^{29} + 25^\circ \ (c \ 0.1, \text{MeOH})$ 0.29, MeOH). The alkyne derivative 14, a presumable intermediate in a conversion of 13 to 1, could also be isolated as a by-product. After transformation of the minor product 14 into the desired 1 under the same Birch **conditl~, to)_bengamide E was finally obtained 4n ri 62 % combined yield fmm 13. Synthetic (+)-bengamide E was unambiguously proved to be identical with authentic specimen by comparison with 1H and 13C NMR** spectra.

Thus, we have completed a highly stereocontrolled synthesis of bengamide E (1). starting from the cobalt-complexed 4-methylpent-2-ynal derivative 2. The newly developed procedure described hem would open up an alternative way for the preparation of bengamide family.

Acknowledgment. We are indebted to Professor Seiichiro 0gawa and Dr. Noritaka Chida, Keio University, for generous supply of the copies of ¹H and ¹³C NMR spectra of bengamide E.

REFERENCES AND NOTES

- 1. (a) Quiñoà, E.; Adamczeski, M.; Crews, P.; Bakus, G. J. *J. Org.*, *Chem.* 1986, 51, 4494. (b) Adamczeski, M.; Quiñoà, E.; Crews, P. *J. Am. Chem. Soc.* 1989, 111, 647. (c) Adamczeski, M.; **Quifid,** E.; Crews, P. J. *Org. Chem.* **1990; 55,** *240.*
- **2. (a) Chida. N.:** Tobe. T.: Ggawa. S. *Tetruhedron Lat.* **1991,32,** 1063. (b) Btoka, C. **A.;** Ehrler, J. *Tetrahedron Lett.* **1991**, 32, 5907. (c) Kishimoto, H.; Ohrui, H.; Meguro, H. J. Org. Chem. **1992**, 57, 5042. (d) Marshall, J. A.; Luke, G. P. Synlett 1992, 1007. (e) Marshall, J. A.; Luke, G. P. J. *Org. Chem.* **1993.58, 6229.**
- **3. Chida, N.;** Tobe, T.; Okada. S.; Ogawa, S. J. *Chem. SOL, Chem. Commun.* **1992.1064.**
- *4. Gwjar,* M. K.; Srinivas, N. R. *Terruhedron Lett. 1991.32, 3409.*
- 5. Mukai, C.; Kataoka, O.; Hanaoka, M. *Tetrahedron Lett.* **1991**, 32, 7553.
- **6.** (a) Hoffmann, R. W.; Julius, M. *Liebigs Ann. Chem. 1991, 811.* (b) Marshall, J. A.; **Wang,** X.-J. *J. Org. Chem.* **1992.57.** 2747.
- 7. Pirkle, W. H.; Hauske, J. R. J. Org. Chem. 1977, 42, 2781.
- 8. ¹H NMR analysis of (-)- and (+)-4 in the presence of tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphoratoleuropium (III) indicated that each isomer is free from contamination with its enantiomeric isomer. The absolute configuration of syn-aldol products were determined as designated by independent chemical transformation to 2,3-bis(benzyloxy)-4-tert-butyldimethylsilyloxybutan-1-ol $(-)$ -i $\{[\alpha]_D^{22}$ -14.4° (c 0.5, CHCl3)) and $(+)$ -i $\{[\alpha]_D^{20}$ +13.9° (c 0.5, CHCl3)) from $(-)$ -4 and $(+)$ -4. respectively, by four steps [(i) LiAlH4, THF, reflux; (ii) TBSCl, Et3N, DMAP, CH2Cl2, r.t.; (iii) NaH, THF, 0° C then BnBr, n Bu₄NI, 0° C \rightarrow r.t.; (iv) O₃, MeOH, -78°C ^{OBn} then NaBH₄, 0°C]. The authentic sample of (+)-i $\left[\alpha\right]_D^{17}$ +13.3° (c 0.5, **OTBS** \sim CHCl3)} was derived from dimethyl L-tartrate by three steps [(i) NaH, **OBn THF, 0°C then BnBr,** $n\text{Bu}_4\text{NI}$ **, 18-crown-6, 0°C** \rightarrow **r.t.; (ii) LiAlH₄, (-)-i** THF, reflux; (iii) NaH, THF, r.t. then TBSCl].
- 9. Gennari, C.; Beretta, M. G.; Bernardi. A. Moro, G.; Scolastico, C.; Todeschini, R. *Tetruhcdron 1986.42, 893.*
- 10. The stereochemistry of four contiguous chiral centers of 9 was tentatively assigned on the basis of ${}^{1}H$ NMR spectral consideration of the lactone 11. Furthermore, conversion of 11 to (+)-bengamide E unambiguously confirmed the assignment of stereochemistry.
- 11. Masamune, S.; Hayase, Y.; Schiling, W.; Chan, W. K.; Bates, G. S. J. Am. Chem. Soc. 1977, 99, 6756.
- 12. Pellegata. R.; Pinza, M.; Pifferi, G. Synthesis 1978, 614.

(Received in Japan 11 May 1994; *accepted* 7 *June* 1994)